
Rendering synthetic ground truth images for eye tracker evaluation

Lech Świrski∗ Neil Dodgson†

University of Cambridge

Abstract

When evaluating eye tracking algorithms, a recurring issue is what
metric to use and what data to compare against. User studies are
informative when considering the entire eye tracking system, how-
ever they are often unsatisfactory for evaluating the gaze estimation
algorithm in isolation. This is particularly an issue when evaluating
a system’s component parts, such as pupil detection, pupil-to-gaze
mapping or head pose estimation.

Instead of user studies, eye tracking algorithms can be evaluated
using simulated input video. We describe a computer graphics ap-
proach to creating realistic synthetic eye images, using a 3D model
of the eye and head and a physically correct rendering technique.
By using rendering, we have full control over the parameters of the
scene such as the gaze vector or camera position, which allows the
calculation of ground truth data, while creating a realistic input for
a video-based gaze estimator.

CR Categories: I.6.5 [Simulation and Modeling]: Model
Development—Modeling methodologies; I.3.8 [Computer Graph-
ics]: Applications;

Keywords: ground truth, pupil detection, eye tracking, rendering

1 Introduction

There is a wide and increasing range of eye tracking techniques
[Hansen and Ji 2010]. With such a large body of literature, being
able to evaluate the techniques well becomes critical. This is nec-
essary for progress in both the field of eye tracking and in fields
which use eye tracking as a tool.

However, it is not immediately obvious how to evaluate eye track-
ing algorithms, neither in terms of what metric to use nor what
ground truth data to compare against. Furthermore, most video-
based eye trackers consist of several stages, such as pupil detec-
tion, head pose estimation and gaze estimation, and evaluating these
components independently is difficult. In this paper, we describe
existing approaches to eye tracker evaluation, and present our own
approach based on rendered images.

Our system uses modern computer graphics techniques to render
highly realistic, physically correct eye images. These images are
calculated using a parametric eye tracker model, which is compat-
ible with exising geometric models of eye tracking systems. This
combination of matching geometric model and eye images can be
used for evaluating eye tracking algorithms.

∗e-mail: lech.swirski@cl.cam.ac.uk
†e-mail: neil.dodgson@cl.cam.ac.uk

Figure 1: Synthetic eye images, with ground truth pupil and glints.

2 Background

Since it is not immediately obvious how to evaluate eye tracking
algorithms, there have been several different approaches to evalua-
tion. We summarise these below.

2.1 User studies

The most common approach to evaluating an eye tracking system
is to run a user study to measure average gaze accuracy. This form
of evaluation is informative, as ultimately what matters to the user
of an eye tracking system is how accurate the gaze is when used
by real users. However, it is also incomplete as an evaluation of
a gaze estimation algorithm, as it evaluates the entire system as a
black box. This means that there is no way of inferring the source
of error, for example whether improving the pupil tracking would
have a noticeable effect on the overall accuracy.

There are also many confounding variables in a user study which
are almost impossible to control or account for. It is not feasible to
control or measure every single such variable in a user study, and
even if one did measure them, there may be error in this measure-
ment. Thus, it is almost impossible for a user study to evaluate a
gaze estimation algorithm on its own merit.

Furthermore, user studies are time consuming and require many
participants to give statistically meaningful results. This time in-
vestment may be acceptable when performing a final evaluation of
a system, but user studies are not feasible for testing during the de-
velopment process. Lastly, user experiments require eye tracking
hardware which is either expensive or built in-house, raising ques-
tions about the external repeatability of the experiment.

2.2 Human labelling

Another common approach to collecting ground truth is human la-
belling, where humans manually annotate images with ground truth
data. Most commonly, this is used to label the pupil contour ellipse
when evaluating pupil detection algorithms [Tsukada et al. 2011;
Świrski et al. 2012]. The human labelled ellipses are compared to
the output of the pupil detection algorithm, for example by mea-
suring their overlap ratio or the Hausdorff distance between them.
Human labelling has also been successfully used for optical flow
datasets [Donath and Kondermann 2013].

This approach assumes that humans can identify the pupil contour
perfectly. This assumption appears to be reasonable— Donath and
Kondermann report an average error on the order of 0.5 px — al-



though it is not clear if this continues to be the case for blurred or
partially occluded ellipses. It is also better if multiple humans label
the same contours and the results are averaged. This avoids indi-
vidual bias and removes outliers, and crowdsourcing services such
as Amazon Mechanical Turk allow simple tasks to be done cheaply
and in parallel, making this cost negligible.

Human labelling can be considered a high quality source of ground
truth for tasks such as pupil detection or eyelid detection — tasks
which require labelling of visible 2D features. It is not, however,
suitable as a ground truth of other types of data, such as 3D gaze
vectors, eyeball centre, or heavily occluded pupils where the pupil
tracking must rely on temporal information alone.

2.3 Artificial eyes

Some approaches are evaluated using artificial eyes [Moore et al.
1996; Zhu et al. 1999; Clarke et al. 2002; Imai et al. 2005], where
a physical artificial eye attempts to mimic the appearance of a real
eye. This artificial eye has known size, and its position is controlled
by motors. Given some form of extrinsic calibration, its position
relative to a camera can be calculated.

This gives the experimenter ground truth data on eye rotation and
position, while maintaining realistic camera and light behaviour.
However, the artificial eye is not necessarily a good model of a real
eye. The simple construction of existing artificial eyes does not
model glints, corneal refractions or varying pupil size, nor does it
model the eyelids or eyelashes which occlude the eye. Also, using
a physical object incurs some amount of measurement error, which
will be indistinguishable from error in the gaze estimation itself.

2.4 Geometrical models

To avoid issues with physical measurements, one can perform a
purely geometrical analysis of the eye tracking model to calculate a
theoretical lower bound on the gaze estimation error, and to analyse
the effect of adding a known amount of noise to the system [Wang
et al. 2005; Villanueva et al. 2006]. Of particular interest is the sim-
ulation framework introduced by Böhme et al. [2008], which sim-
ulates many aspects of a ‘standard’ eye tracking system, including
corneal refraction, finite camera resolution and location of glints.

Böhme et al. argue that geometric modelling can objectively anal-
yse the performance of eye tracker set-ups, in particular when com-
paring two systems against each other, as it allows one factor (such
as light positions) to be changed, while keeping everything else
constant. Also, unlike a user study, one has ground truth for in-
ternal values of the system, such as projected pupil contour points
or gaze vector in camera-space.

However, geometrical modelling does not perform image process-
ing, injecting Gaussian noise to simulate the error. Böhme et al.
refer to this random perturbation as the “feature position error”.
The problem with this approach is that it is not a realistic model of
the real error, and is biased towards approaches which assume that
all noise is Gaussian. Current simulations are also limited in what
they model; these limitations could be overcome by a sufficiently
complex model, but still geometrical modelling does not allow one
to evaluate image processing algorithms, as they do not generate
images. This is a severe limitation.

2.5 Synthetic images

To allow one to evaluate image processing while maintaining the
control that one has in a geometrical model, one can generate syn-
thetic images of an eye based on the geometrical model using com-
puter graphics [Morimoto and Mimica 2005]. As with human la-

belling, synthetic images have successfully been used as ground
truth in optical flow [Baker et al. 2010].

Synthetic images are, in many ways, complementary to geometri-
cal models. They use the same data as a geometrical model, such
as eye position, light position or camera focal length, but instead of
directly using a mathematical projection model to calculate image
points, they generate images using some form of computer graph-
ics. This allows a far more accurate model than Gaussian noise
of things like camera distortion, focal blur or finite image reso-
lution, as these sources of noise are introduced implicitly by the
rendering algorithm. This provides input to the eye tracker evalua-
tion, while the geometrical models can be used as before— without
adding noise— to generate the ground truth data.

Modern computer graphics, thanks to advances in algorithms and
in hardware, has achieved a level of fidelity which makes rendered
images nearly indistinguishable from real life. Furthermore, phys-
ically correct rendering techniques allow the rendering of images
which are visually plausible and accurately model real-world light
and surface behaviour.

We describe a system which, given input model parameters similar
to those used by Böhme et al., uses path-tracing to renders realistic
synthetic images of the eyeball and surrounding facial structure.
Our system and example scripts and images are available online1.

3 Our simulator

Current simulation approaches do not model the parts of the head
surrounding the eye, such as the eyelids, eyelashes, and surround-
ing skin, which limits their use when evaluating image processing
algorithms. Eyelids and eyelashes occlude parts of the eye, and can
cause simple techniques to fail if they are not robust to occlusions;
similarly, the skin and shadows upon it may have similar inten-
sity profiles to the pupil or iris, again causing simple methods to
fail. Furthermore, some techniques rely on there being eyelids, for
example using the eye corners to compensate for head movement
[Hansen and Ji 2010].

For these reasons, we decided to build a 3D model which includes
both the eye and the surrounding facial structure — in fact, we
model the entire head, as this allows us to model both mobile and
remote eye tracking systems. We also wanted to use a physically
correct rendering method, which would be able to correctly handle
reflections, refraction, shadows and depth-of-field blur.

To generate our synthetic images, we use Blender [2013], an open-
source 3D computer graphics software product which allows both
modelling and rendering of 3D scenes. Using Blender had several
benefits. It includes a GPU implementation of path-tracing [Kajiya
1986], a physically correct rendering method that can render pho-
tographic-quality images in less then a minute, and preview-quality
images at interactive rates. It is also a very powerful modelling and
animation tool, which allows us to build a realistic head rather than
a simple sphere-based eye model. Additionally, it has an embedded
Python interpreter, allowing us to script the positions of objects.
This is critical when generating a large amount of test data, without
requiring a user to manually edit the model.

3.1 The model

We start with an existing public domain head model [Holmberg
2012]. This model allows control of the position of the eyes, the
eyelids (Fig. 2), the radius of the pupil (Fig. 3), and the positions of
a variety of facial features that are mostly irrelevant to eye tracking.

1http://www.cl.cam.ac.uk/research/rainbow/
projects/eyerender

http://www.cl.cam.ac.uk/research/rainbow/projects/eyerender 
http://www.cl.cam.ac.uk/research/rainbow/projects/eyerender 


Figure 2: The user has control over the positions of the eyelids,
allowing simulation of blinks.

Figure 3: Users can vary the dilation of the pupil. Note that the
iris texture stretches to match the pupil dilation.

We modified this model to make it better suited for generating syn-
thetic eye images: we retextured the head and iris to have the ap-
pearance of being under near-infrared illumination, as this is what
a large proportion of video oculography techniques use; we re-
modelled the eye and cornea to make them consistent with Listing’s
reduced eye model, including making the iris flat and the cornea
spherical; we improved the realism of the cornea, complete with re-
fraction and glints, and allowing the user to change the corneal in-
dex of refraction (Fig. 5); and we added eye lashes, using Blender’s
directable hair particle modelling. We allow the user to alter the iris
colour by allowing them to change the iris texture (Fig. 4).

Most systems use near-infrared (NIR) LED light sources for illu-
mination — additionally, many systems use the corneal reflections
of the LEDs (i.e. the glints) as part of the eye tracker algorithim.
It is therefore important to model these light sources realistically.
We model the LEDs as spheres which emit light directionally, with
some viewing angle (we use 45◦ by default). Using directed lights
is a more accurate model of real LEDs than omni-directional point
lights. Additionally, our lights have an adjustable non-zero size—
again, this is a better approximation of real LEDs than infintessi-
maly small point lights, as the corresponding corneal glint is not an
idealised single point, but an area with some shape.

We also perform a post-render compositing step which adds a small
amount of random shot noise and line noise to the image. This
provides a simulation of standard camera noise.

3.2 Generating images

One of the major advantages of using a simulation framework, like
that of Böhme et al., is that simulation parameters can scripted.
This allows one to, for example, test an algorithm against a variety
of eye tracking setups. Our model also allows this. We have writ-
ten a Python library which sets the model parameters and renders
the model using Blender. This library allows the user to set: eye
radius, position and orientation (3 DoF); how closed the eye is; iris
texture; cornea refractive index; pupil dilation; camera position and
orientation; camera focal length; camera F-number (for depth of
field); image size; and lights (position, orientation, viewing angle,
size and intensity).

Once these are set, the user can call the render function, and the
library passes these values to Blender, which appropriately modi-
fies the model to use these parameters and renders a single frame.
The majority of these have default values based on anthropomor-
phic averages and standard webcam parameters, so a user can eas-

Figure 4: We include two iris textures with the model, light and
dark. Users can also specify their own iris texture.

Figure 5: Users can vary the index of refraction of the cornea. Note
that this changes the size of the glints — this is realistic physical
behaviour, governed by the Fresnel equations.

ily generate images by just setting camera position, orientation and
adding a couple of lights. All of the images in this section were
generated using this library.

We chose our parameters and eye model to be compatible with the
model used by Böhme et al. (Fig 6). This allows us to use their
framework to calculate ground truth image coordinates for the pupil
contour and glints (Fig 1). We do this by generating a MATLAB
script compatible with the Böhme et al. simulator, which initialises
an eye, camera and lights so that their parameters match those used
in Blender. This is how Figures 1 and 6 were generated.

3.3 Limitations

Although our model is highly realistic, it has several limitations.
Firstly, our eye model has, by design, similar limitations to the
Böhme et al. simulator: we model neither the aqueous humour
nor the lens, which means that we cannot render Purkinje images
[Crane and Steele 1978]; we use a perfectly spherical cornea, while
a real cornea is slightly ellipsoidal; and we assume an immobile
pupil. Böhme et al. [2008] discuss these limitations— we maintain
the same limitations to be compatible with their simulator, although
we could improve the Blender model to remove them.

Furthermore, we currently cannot dynamically change the pupil
shape, iris radius, cornea radius or interocular distance— however,
these can be edited manually. We also do not model the inside of
the eye, and therefore cannot synthesise bright-pupil images. Nor
do we implement Listing’s law [Haustein 1989], as it does not nec-
essarily always apply.

We render each frame individually, rather than as an animation.
This means that we do not have any motion blur, which is a source
of error when tracking the eye during saccades. Also, the small
amount of post-render camera noise that we add is plausible, but
has no physical basis. It would be better to model or get samples
of real camera noise, and apply that instead. Finally, our model
is limited to one head shape, with the facial structure of a white
male, and therefore has limited use if trying to analyse differences
between races and sexes.

4 Discussion

We have presented a model that uses computer graphics and phys-
ically correct rendering techniques to synthesise parametrised eye-



Figure 6: Our model (left) uses similar parameters to Böhme et al.,
which means that we can pass our parameters into their MATLAB
simulation framework (right).

Figure 7: An image of a real eye (left), and a rendered image from
our model (right).

and-head images, which can be used alongside ground truth data
calculated using an existing geometric simulation framework.

We believe that our images are sufficiently realistic that they can
plausibly be used for the evaluation of the image processing side
of eye tracking algorithms. Although the use of realistic synthetic
images was not feasible in the past, due to the rendering time being
measured in hours, advances in computer graphics and in hardware
have solved this issue, and no image in this paper took longer to
render than one minute.

We can only repeat the sentiments of Böhme et al. on the advan-
tages of using simulation for the evaluation and development of eye
tracking systems. Simulation allows us to calculate ground truth
data which is entirely correct, and does not rely on external mea-
surement which will always entail some amount of error; it allows
us to control parameters which are implausible or even impossible
to control in a real user study; we can run exactly the same experi-
ment with exactly the same parameters as many times as we want,
making the evaluation externally reproducible; and we can do all of
this without having to leave our desks, organise participants or even
buy hardware. We are currently using this system for developing
and evaluating our work, and we have already found it invaluable
during the development process for testing as well as debugging.

We have not presented an evaluation of the realism of our images,
as it is not obvious how to evaluate them— again we encounter the
problem of ground truth. Ideally, there would be an existing ground
truth dataset with known parametrisation, but we are not aware of
such a dataset for eye images. Our rendered images appear to agree
with the data from the Böhme et al. simulator, and qualitatively ap-
pear realistic. In Figure 7, we compare an real eye image, captured
using a Dikablis system, with an image rendered by our model.
Upon close inspection, it is clear which image is real and which is
synthetic, however we claim that it is not obvious at first glance,
and that the difference is much smaller than with previous simula-
tion approaches.

References

BAKER, S., SCHARSTEIN, D., LEWIS, J. P., ROTH, S., BLACK,
M. J., AND SZELISKI, R. 2010. A Database and Evaluation
Methodology for Optical Flow. International Journal of Com-
puter Vision 92, 1 (Nov.), 1–31.

BLENDER FOUNDATION, 2013. Blender 2.69. http://www.
blender.org/.

BÖHME, M., DORR, M., GRAW, M., MARTINETZ, T., AND
BARTH, E. 2008. A Software Framework for Simulating Eye
Trackers. In Proc. ETRA, no. 212.

CLARKE, A. H., DITTERICH, J., DRÜEN, K., SCHÖNFELD, U.,
AND STEINEKE, C. 2002. Using high frame rate CMOS sensors
for three-dimensional eye tracking. Behavior research methods
instruments & computers 34, 4, 549–560.

CRANE, H. D., AND STEELE, C. M. 1978. Accurate three-
dimensional eyetracker. Applied optics 17, 5 (Mar.), 691–705.

DONATH, A., AND KONDERMANN, D. 2013. Is Crowdsourc-
ing for Optical Flow Ground Truth Generation Feasible? In
Proc. ICVS, Springer, M. Chen, B. Leibe, and B. Neumann, Eds.,
vol. 7963 of Lecture Notes in Computer Science, 193–202.

HANSEN, D. W., AND JI, Q. 2010. In the eye of the beholder:
a survey of models for eyes and gaze. IEEE Trans. PAMI 32, 3
(Mar.), 478–500.

HAUSTEIN, W. 1989. Considerations on Listing’s Law and the
primary position by means of a matrix description of eye position
control. Biological Cybernetics 60, 6, 411–420.

HOLMBERG, N., 2012. Advance head rig. http://www.
blendswap.com/blends/view/48717.

IMAI, T., SEKINE, K., HATTORI, K., TAKEDA, N., KOIZUKA,
I., NAKAMAE, K., MIURA, K., FUJIOKA, H., AND KUBO,
T. 2005. Comparing the accuracy of video-oculography and
the scleral search coil system in human eye movement analysis.
Auris Nasus Larynx 32, 1, 3–9.

KAJIYA, J. T. 1986. The rendering equation. Computer Graphics
20, 4, 143–150.

MOORE, S. T., HASLWANTER, T., CURTHOYS, I. S., AND
SMITH, S. T. 1996. A geometric basis for measurement of
three-dimensional eye position using image processing. Vision
research 36, 3 (Feb.), 445–459.

MORIMOTO, C. H., AND MIMICA, M. R. M. 2005. Eye gaze
tracking techniques for interactive applications. Computer Vision
and Image Understanding 98, 1 (Apr.), 4–24.

ŚWIRSKI, L., BULLING, A., AND DODGSON, N. 2012. Ro-
bust real-time pupil tracking in highly off-axis images. In Proc.
ETRA.

TSUKADA, A., SHINO, M., DEVYVER, M. S., AND KANADE, T.
2011. Illumination-free gaze estimation method for first-person
vision wearable device. Computer Vision in Vehicle Technology.

VILLANUEVA, A., CABEZA, R., AND PORTA, S. 2006. Eye track-
ing: Pupil orientation geometrical modeling. Image and Vision
Computing 24, 7 (July), 663–679.

WANG, J.-G., SUNG, E., AND VENKATESWARLU, R. 2005. Esti-
mating the eye gaze from one eye. Computer Vision and Image
Understanding 98, 1, 83–103.

ZHU, D., MOORE, S. T., AND RAPHAN, T. 1999. Robust pupil
center detection using a curvature algorithm. Computer methods
and programs in biomedicine 59, 3 (June), 145–57.

http://www.blender.org/
http://www.blender.org/
http://www.blendswap.com/blends/view/48717
http://www.blendswap.com/blends/view/48717

